

Course Description

College/Faculty	Biomedic	al Eng	gineering	Department -			
Curriculum	Biomedic	al Eng	gineering Program,	Year 2020 Edition			
			Section 1 Gen	eral Information			
BME 102			Thermo fluids and Med	chanics Modelling		3	(2-3-6)
Co-requisite Course(s)		-				
Prerequisite Course(s	s)		-				
Semester			2/2024				
Section			02, 021, 12				
Categorization of Co	urse		Preparation Course				
			General Education Cou	urses			
			Specific Requirement	Courses			
			Free Elective Courses				
Responsible			Assoc.Prof.Nuntachai	Thongpance	Instructor		
			1.Assoc.Prof. Nuntachai T	hongpance			
			2. T.Anucha Phanaksri				
			3. T.Kittiphan Rungprasert	t		_	
Instructor			4. Asst. Prof. Dr. Phichit B	Boonkrong	Instructor	Ш	Guest Instructor
			5.Assoc. Prof. Dr. Nattapo	n			
			Thanatchangsaeng				
Place					On Campus		Off Cumpas

23 December 2024

Date of preparation

Section 2 Course objectives and course components

1. Objective of Course

- 1.1 This course is designed for Biomedical Engineering students. The objectives of this course are as following:
- 1) To provide students with knowledge and understanding of basic principles and concepts of fluid mechanics, thermodynamics and heat transfer.
- 2) To provide students with knowledge and understanding of the application of basic principles of fluid mechanics, thermodynamics and heat transfer in medical engineering.
- 3) To provide students with knowledge and understanding of computerized Thermofluid modeling and Applications in biomedical engineering

2. Course Description

Fluid properties; equation of continuity; flow patterns; pressure distribution in the fluid; hydro static pressure; pressure distribution on a rigid body moving in a fluid; fluid mechanics; fluid flow in pipes; uniform flow; viscosity of fluid; heat transfer; flow with a heat exchanger; dynamic of gas and fundamental principles of thermodynamics; gas and vapor power cycles; refrigeration cycles; air conditioning; fluid flow modeling using finite element calculation; calculation of relationship between various physics using computer programs and applications in biomedical engineering.

3. Number of hours per week for advising and academic counseling for individual students.

5hours/week	e-mail: preya.a@rsu.ac.th
	Facebook:
	Line: Ipompomanu
	Others

4. Course Learning Outcomes: CLOs

- 1) Students can explain the properties of fluids. Continuous flow equations, flow patterns, pressure distribution in fluids. hydrostatic pressure The distribution of pressure on a rigid body moving in a fluid. fluid mechanics Fluid flow in pipe systems uniform flow fluid viscosity
- 2) Students can explain heat transfer. flow with heat transfer Gas dynamics and basic thermodynamic principles. Gas and vapor power cycles refrigeration cycle Air conditioning system
- 3) Students can use fluid flow models using finite element calculations.
- 4) Students will be able to explain computational relationships between various physics using computer programs and their applications in biomedical engineering.

Section 3 Learning Outcomes

Development of the standard learning outcomes in the following:

1. Morals and Ethics

•	Expected Outcomes	Methodology	Assessment
1.2	The students need to have self-	☐ Teaching indirectly about discipline	Observing student behavior
	disciplinary, punctuality and	and punctuality in classroom.	and manner in class.
	responsibility for ourselves and	☐ Applying classroom policy.	Checking completed
	society.		assignment submission.

2. Knowledge

•	Expected Outcomes	Methodology	Assessment			
2.2	Able to analyze problems	☐ Focus on teaching and learning	☐ Assessment of student			
	Understand and explain	that is active learning.	achievement and performance in			
	Biomedical Engineering		various areas, including			
	requirements including		, ,			
	applying knowledge, skills and		☐ Mid-term and final exams			
	using relevant and suitable					
	tools to solve problems.		☐ Reporting/Project			
2.3	Able to analyze, design, install,		Presentations			
	improve tooling systems or	Provide learning from real	Tresentations			
	work in the field Biomedical	situations.				
	engineering to meet					
	requirements and needs.					

3. Cognitive Skills

•	Expected Outcomes	Methodology	Assessment		
3.1	Think critically and	1. Organize teaching and learning	1.	Writing a presentation report	
	systematically.	processes that practice thinking skills			
3.4	The students will be able to	Both at the individual and group level,	2.	The use of exams or exercises	
	apply the basic principles of	such as presentations project preparation		that allow students to solve	
	physics to analyze engineering	laboratory experiments, etc.		problems	
	problems accurately and	2. Organize activities for students to			
	appropriately.	have the opportunity to actually work.	3.	Interviews that allow students	
				to practice problem solving.	

4. Transaction Skills and Responsibility

	Expected Outcomes		Methodology	Assessment		
4.3	Responsible for continuous	1.	Organize teaching and learning	1.	Group presentations to assess	
	development of their own and		activities that emphasize group		regularity of participation in	
	professional learning, learning		work and tasks that require		group activities.	
	their own emotional state. Learn		interpersonal interaction.	2.	Assess the responsibilities of	
	to work with others. Learn	2.	Provide practical learning		assigned duties.	
	techniques for asking for help		experiences			
	or ask for information to be					
	used for work					

5. Numerical Analysis, Communication and Information Technology Skills

•	Expected Outcomes	Methodology	Assessment					
5.4	Able to use technology, tools,	Provide learning experiences that	1.	Speaking	skills	for		
	equipment, software or the	encourage learners to choose a		presentations				
	Internet in research In	variety of and appropriate	2.	Report Writing	Skills			
	communication to support work	information and communication	3.	Presentation	skills	using		
	such as interaction, expressing	technologies.		information tec	hnology			
	opinions Coordinate work pick-							
	up							

Section 4 Teaching Plan and Assessment

1. Course Planning

Week	Topics/Description	Activity and Media	Hours	Instructor
1-2	Chapter 1 Fluid Statics	1. 1. Lecture	5	1.Assoc.Prof.Nuntachai
(6-17/01/25)	1.1 Basic Properties of Fluids	Teaching media: ppt		Thongpance
	1.2 Fluid Pressure	Teaching documents, Chapter 1		2. TAnucha Phanaksri
	1.3 Pascal's Law	2. Assign a project to model the		3. T.Kittiphan Rungprasert
	1.4 Archimedes' Principle	distribution of temperature and/or		
	1.5 Surface Tension	pressure and/or heat in related		
		medical devices as follows:		
		2.1 Incubator		
		2.2 Autoclave		
		2.3 Refrigeration		
		2.4 Pressure distribution in a closed		
		system		
		2.5 Heat distribution in an Infant		
		Incubator		
		2.6 Heat distribution in a Radiant		
		Warmer		
		2.7 Applications in other related		
		biomedical engineering		
		3. Lab 1: Principles of static pressure		
		measurement (4%)		
		4. Lab 2: Principles of dynamic		
		pressure measurement (4%)		

Week	Topics/Description	Activity and Media	Hours	Instructor
3-5	Chapter 2 Fluid Dynamics	1. Lecture	7.5	1.Assoc.Prof.Nuntachai
(20/01-7/02/25)	1.1 The equation of continuity	☐ Teaching media: ppt		Thongpance
	1.2 Bernoulli's Equation	☐ Teaching documents, Chapter 2		2. TAnucha Phanaksri
	1.3 Application of the equation of	2. Lab 3: Principles of measuring flow		3. T.Kittiphan Rungprasert
	continuity and Bernoulli's equation	rate (3%)		
	1.4 Application of fluid dynamics	3. Lab 4: Measuring air flow rate in pipes		
	in biomedical engineering	(3%)		
3-5	Chapter 3 Viscous Flow	1. 1. Lecture	7.5	1.Assoc.Prof. Nuntachai
(20/01-7/02/25)	3.1 Flow Phenomenon	Teaching media: ppt		Thongpance
	• Laminar Flow	Teaching documents Chapter 3		2. TAnucha Phanaksri
	Turbulent Flow	2. Lab 5 Study of energy loss in pipe		3. T.Kittiphan Rungprasert
	• Reynolds Number	flow from the Hagen-Poiseuille		
	3.2 Bernoulli Equation in External	equation (3%)		
	Energy			
	3.3 Force and Momentum in Flow			
	3.4 Power from Pumps			
	3.5 Flow in Pipes			
	3.6 Energy Losses in Pipes			
	3.7 Energy Losses in Laminar and Turbulent Flow			
	3.8 Series and Parallel Pipe			
	Connections			
	3.9 Applications of Viscous Flow in			
	Biomedical Engineering			
		First exam: 16/02/68: 20%		
6 (10-14/02/25)	Chapter 4 Gases	1. Lecture	2	1.Assoc.Prof. Nuntachai
(10-14/02/23)	4.1 Molecular Models of Gases	Teaching media: ppt		Thongpance
	4.2 Avogadro's Law	Teaching documents Chapter 4		2. TAnucha Phanaksri
	3.3 4.2 Gas Laws	4 Y	2	3. T.Kittiphan Rungprasert
6 (10-14/02/25)	Chapter 5 Mechanics of Breathing	1. Lecture	3	1.Assoc.Prof. Nuntachai
	5.1 Fundamentals of the	Teaching media: ppt		Thongpance 2. T.Anucha Phanaksri
	Respiratory System 5.2 Lung Volume, Pressure, and	Teaching documents Chapter 5		3. T.Kittiphan Rungprasert
	Compliance			3. 1.Kittipilan Kungprasert
	5.3 Mechanics of Breathing			
7	Chapter 6 Cardiovascular	1.Lecture	5	1.Assoc.Prof. Nuntachai
(17-21/02/25)	Mechanics	Teaching media: ppt	J	Thongpance
	6.1 Fundamentals of the	Teaching documents Chapter 6		2. T.Anucha Phanaksri
	Cardiovascular System	8		3. T.Kittiphan Rungprasert
	6.2 Application of Fluid Mechanics			
	to the Cardiovascular System			
	6.2.1 Cardiovascular Pressure			
	6.2.2 Cardiovascular Work			
	6.2.3 Cardiovascular Circulatory			
	State			
	6.2.4 Cardiovascular Resistance			
	6.2.5 Continuity Law for			
	Cardiovascular Flow State			
	6.2.6 Laminar and Turbulent Flow			
	of the Cardiovascular System	8: 24-28/02/68 : Term-Break		
9-10	Chapter 7 Heat	1. 1. Lecture	10	1.Assoc.Prof. Nuntachai
(3-14/03/25)	7.1 Fundamentals of Temperature	Teaching media: ppt		Thongpance
	and Heat	Teaching documents Chapter 5		2. T.Anucha Phanaksri
	7.2 Heat Quantity and State Changes	2. Computer with Comsol program		3. T.Kittiphan Rungprasert
	of Matter	3. Lab 6 Study of heat and humidity		4. Asst. Prof. Dr. Phichit
	7.3 Vapor Pressure	sources in infant incubators (3%)		Boonkrong
	7.4 Humidity and Relative Humidity	4. Lab 7 Principles of Finite Element		
	7.5 Heat Transfer	and heat distribution and flow model		
	7.6 Applications of Heat in	using finite element calculations		
	Biomedical Engineering	with computer programs and		

Environment 8.2 Zeroth Law of Thermodynamics 8.3 First Law of Thermodynamics 8.4 Thermal Processes in Ideal Gas Systems 8.5 Reversible and Irreversible Processes 8.6 Entropy 8.7 Second and Third Laws of Thermodynamics 8.8 Heat Engines 8.9 Refrigeration 8.10 Applications of Heat in Biomedical Engineering 14-16 (31/03-18/04/25) 15 (1.Assoc.Prof. Nuntachai Thongpance 2. T.Anucha Phanaksri 3. T.Kititiphan Rungprasert 4. Asst. Prof. Dr. Phichit 5. T.Anucha Phanaksri 3. T.Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit 5. T.Anucha Phanaksri 3. T.Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit 5. T.Anucha Phanaksri 3. T.Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit 5. T.Anucha Phanaksri 5. T.Anucha Phanaksri 5. T.Anucha Phana	Week	Topics/Description	Activity and Media	Hours	Instructor
1.1-3					
Thermodynamics 8.3 First Law of Thermodynamics 8.4 Thermal Processes in Ideal Gas Systems 8.5 Reversible and Irreversible Processes 8.6 Entropy 8.7 Second and Third Laws of Thermodynamics 8.9 Refrigeration 8.10 Applications of Heat in Biomedical Engineering 1. Viscoelasticity vs Viscosity Shear thinning vs Shear thickening Recological properties: Flow experiment testing 2. Loss modulus Viscoelastic mexperiment testing 3. Applications of Recology in Biomedical Engineering 3. Applications of Recology in Biomedical Engineering 17 (21-250425) 1. Incubator 2. Autoclave 3. Cooling machine 4. Pressure distribution in a Closed system 5. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering applications 3. Labo 8 Principles of Finite Element and heat distribution with computer program and application in biomedical engineering flinite element calculation with computer program and application in biomedical engineering 3003/68 2nd exam: 30 % 1. Lecture Teaching media: ppt Teaching documents Chapter 9 2. Lab 10 Principles of Finite Element and heat distribution in biomedical engineering 3. Teaching documents Chapter 9 2. Lab 10 Principles of Finite Element and heat distribution in biomedical engineering 3. Therefore and application in biomedical engineering 4. Asst. Prof. Dr. Phichit Boonkrong 4. Asst. Prof. Dr. Nuntachai Thongpance 2. T. Anucha Phanaksri 3. T. Kittiphan Rungprasert 4. Asst. Prof. Dr. Nuntachai Thongpance 2. T. Anucha Phanaksri 3. T. Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit Boonkrong 5. Assoc. Prof. Dr. Nuntachai Thongpance 2. T. Anucha Phanaksri 3. T. Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit Boonkrong 5. Labo 11 Testing Viscoelastic 4. Asst. Prof. Dr. Phichit Boonkrong 5. Labo 11 Testing Viscoelastic 6. Entertion and application in biomedical engineering applications 6. Labo 12 Principles of Finite Element and heat distribution in a closed system 6. Heat distribution in a closed system 7. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering	11-13 (17-28/03/25)	8.1 Thermodynamic Systems and Environment	Lecture Teaching media: ppt Teaching documents Chapter 8	15	Thongpance 2. T.Anucha Phanaksri
14-16 (31/03-18/04/25) Chapter 9 Rheology 1. Viscoelasticity vs Viscosity Shear thinning vs Shear thickening Rheological properties: Flow experiment testing 2. Loss modulus vs Storage modulus Viscoelastic measurements Rheological properties: Oscillation experiment testing 3. Applications of Rheology in Biomedical Engineering 3. Applications of Rheology in Biomedical Engineering 4. Presents a project modeling the distribution of temperature and/or pressure and/or heat in related medical devices as follows: (20%) 1. Incubator 2. Autoclave 3. Cooling machine 4. Pressure distribution in a closed system 5. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering applications 2. Chapter 9 Rheology 1. Viscoelasticity vs Viscosity Teaching documents Chapter 9 2. Lab 10 Principles of Finite Element and heat distribution and flow model using finite element calculation with computer program and application in biomedical engineering 3. Lab 11 Testing Viscoelastic Materials (10 %) 1. Incubator 2. Autoclave 3. Cooling machine 4. Pressure distribution in a closed system 5. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering applications 5. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering applications 2. T. Anucha Phanaksri 3. T. Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit Boonkrong 5. Assoc. Prof. Dr. Nattapor Thanatchangsaeng 7. Assoc.Prof. Dr. Phichit Boonkrong 7. Asst. Prof. Dr. Phichit Boonkrong 7. Fleat distribution in a closed system 7. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering applications 7. Other related biomedical engineering applications 7. Other related biomedical engineering applications 7. Assoc.Prof. Dr. Nattapor 7. Assoc.Prof. Dr. Phichit Program and application in biomedical engineering and application in a closed system 7. Heat distribution in a Radiant Wa		Thermodynamics 8.3 First Law of Thermodynamics 8.4 Thermal Processes in Ideal Gas Systems 8.5 Reversible and Irreversible Processes 8.6 Entropy 8.7 Second and Third Laws of Thermodynamics 8.8 Heat Engines 8.9 Refrigeration 8.10 Applications of Heat in	3. Labo 8 Principles of Finite Element and heat distribution and flow model using finite element calculation with computer program and application in biomedical engineering (3%) 4. Lab 9 Principles of Finite Element and heat distribution and flow model using finite element calculation with computer program and application in biomedical engineering		4. Asst. Prof. Dr. Phichit
1. Viscoelasticity vs Viscosity Shear thinning vs Shear thickening Rheological properties: Flow experiment testing 2. Loss modulus Viscoelastic measurements Rheological properties: Oscillation experiment testing 3. Applications of Rheology in Biomedical Engineering 17	14.16	Cl. (O.D.) 1		1.5	
distribution of temperature and/or pressure and/or heat in related medical devices as follows: (20%) 1. Incubator 2. Autoclave 3. Cooling machine 4. Pressure distribution in a closed system 5. Heat distribution in a Radiant Incubator 6. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering applications 7. Thongpance 7. Thoughts in related medical devices as follows: (20%) 7. Thoughts in the distribution in a least of the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or heat in related medical devices as follows: (20%) 7. Thoughts in the pressure and/or he	(31/03-18/04/25)	1. Viscoelasticity vs Viscosity Shear thinning vs Shear thickening Rheological properties: Flow experiment testing 2. Loss modulus vs Storage modulus Viscoelastic measurements Rheological properties: Oscillation experiment testing 3. Applications of Rheology in Biomedical Engineering	Teaching media: ppt Teaching documents Chapter 9 2. Lab 10 Principles of Finite Element and heat distribution and flow model using finite element calculation with computer program and application in biomedical engineering 3. Lab 11 Testing Viscoelastic Materials (10 %)		Thongpance 2. T.Anucha Phanaksri 3. T.Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit Boonkrong 5.Assoc. Prof. Dr. Nattapon Thanatchangsaeng
		distribution of temperature and/or pressure and/or heat in related medical devices as follows: (20%) 1. Incubator 2. Autoclave 3. Cooling machine 4. Pressure distribution in a closed system 5. Heat distribution in an Infant Incubator 6. Heat distribution in a Radiant Warmer 7. Other related biomedical	distribution of temperature and/or pressure and/or heat in related medical devices as follows: (20%) 1. Incubator 2. Autoclave 3. Cooling machine 4. Pressure distribution in a closed system 5. Heat distribution in an Infant Incubator 6. Heat distribution in a Radiant Warmer 7. Other related biomedical engineering applications	5	Thongpance 2. T.Anucha Phanaksri 3. T.Kittiphan Rungprasert 4. Asst. Prof. Dr. Phichit
			27/04/68 3rd exam: 7%		

2. Assessment Planning

Methods of measuring and evaluating learning outcomes		Learning Outcome(%)					Total proportion of		
		1.2	2.2	2.3	3.1	3.4	4.3	5.4	measurement and evaluation
Attendance, laboratory attendance, assignment submission	All	5					5	5	15
Participation in work									
Lab Report	All	5	2.5		2.5		2.5	2.5	15
Project	8,16		5	5	2.5	2.5	2.5	2.5	20
Exam1	6		2.5	4.5	7.5	2.5			17
Exam2	12		5	2.5	10	5.5			23
Exam3	16		5			5			10
Total learning outcomes		10	20	12	22.5	15.5	10	10	100%
Proportion of learning outcomes		10	2	2	3	8	10	10	100%

Grading

Grade	Score
A	80-100
B+	75-79
В	70-74
C+	65-69
С	60-64
D+	55-59
D	50-54
F	0-49

Section 5 Learning and Teaching Resources

1. Textbooks and main documents

- [1] Assoc. Prof. Nantachai Thongpance, Teaching materials for the subject of Thermofluids and Mechanics Modelling, College of Biomedical Engineering, Rangsit University, 2025
- [2] Keith Sherwin and Michael Horsley. (1996). Thermofluids. Chapman&Hill.
- [3] Yunus A. Cengel, Robert H. Turnel, and John M. Cimbala, "Fundamentals of Thermal-Fluid Sciences", McGraw Hill, ISBN: 978-0-07-352925-7 (2008)

2. Supplementary Textbooks

- Cengel, Y.A. and Boles, M.A. (2011). Thermodynamics: an engineering approach. (7th ed.)
 New York: McGraw-Hill, Inc.
- 2. Deborah A. Kaminski and Michael K. Jensen. (2013). Introduction to Thermal and Fluid engineering. U.S.A: John Wiley & Sons, Inc.
- Devon J. Godfrey, Shiva K. Das and Anthony B. Wolbarst. (2014). Advances in Medical Physics. U.S.A.
- 4. Incropera, F. P., and Dewitt, D. P. (2011). **Introduction to Heat Transfer**. (3rd ed.). U.S.A. John Wiley & Sons, Inc.
- 5. Irving P. Herman. (2006). Physics of the human body, New York: Springer.
- 6. MUNSON,B.R.,et.al. (2010). **Fundamentals of Fluid Mechanics**. (6th ed.). New York:John Wiley&Sons,Inc.

3. Important documents and information

- 1. Principle of operation of the autoclave AH-1200T/2 (animation)
 - https://www.youtube.com/watch?v=Z2J6l-nxz_E
- 2. Heat Transfer: Introduction to Heat Transfer (1 of 26)

https://www.youtube.com/watch?v=TWTQx3W-2k8

Section 6 Assessment and Improvement of Course Operation

1. Course assessment strategies by students

Evaluation of effectiveness in this course prepared by students Organized activities to bring ideas and opinions from students as follows

- 1.1 Group discussion between teachers and students
- 1.2 Observation from learners' behavior
- 1.3 Teacher evaluation form and course assessment form

2. Teaching Development

Changes made in accordance with the previous evaluation are the teaching development by brainstorming activities to find the teaching solution as following:

- 1.1 Teaching and learning seminars.
- 1.2 Survey, field trip and conference

3. improving teaching

After the evaluation of teaching in Item 2, teaching has been improved by organizing brainstorming activities and find more information on how to improve teaching as follows:

- 3.1 Teaching and learning meetings between instructors in the course.
- 3.2 Use the results of learning assessment as information to improve teaching to be up to date and in line with the current national development situation.

4. Verification of the Achievement of Students

Discuss with students
Investigate from student behaviors
Grading and evaluation of learning outcome
Comprehensive knowledge examination
Learning outcome report
Class evaluation / peer evaluation
Others: This course will verify student achievements in various aspects as summarized below.

- 1. The instructor in charge of the course assesses the consistency of the examination, to the learning outcomes according to the curriculum standard framework
- 2. The Standards Oversight Committee assesses the consistency of the examination with the objectives of the course.
- Moral and ethical aspects Verification is based on behavior in the area of fraud in the examination.
- 4. Verification in all courses, both theory and practice, project work must be consistent with the learning assessment strategy. It is the responsibility of instructors to issue examinations or set up examination mechanisms and procedures.
- 5. Teaching plans are evaluated in relation to exam evaluation. Assessment of teaching and learning achievement from exam results by the program committee and/or the expert committee from within the institution.
- 6. There is verification from test scores, or assignments Teachers are assessed, and evaluation of teaching and learning by students.
- 7. The college Committee approves the assessment results of the course.

5. Review and planning for Improvement Subject Course

From the assessment results and verify the achievement and effectiveness of the course, there is a plan to improve teaching and course details. to achieve more quality by improving the teaching of subjects in every semester or based on recommendations and results of verification of achievement standards.